翻訳と辞書
Words near each other
・ FAM40A
・ FAM43A
・ FAM46A
・ FAM46C
・ FAM47E-STBD1
・ FAM48A
・ FAM49A
・ FAM50A
・ FAM54B
・ FAM57B
・ FAM60A
・ Falter im Wind
・ Falter Place, Nebraska
・ Faltings height
・ Faltings' product theorem
Faltings's theorem
・ Faltonia Betitia Proba
・ Faltonius Pinianus
・ Faltonius Probus Alypius
・ Faltonius Restitutianus
・ Faltschonhorn
・ Faltu
・ FaltyDL
・ Faltyjanki
・ Falu
・ Falu BK
・ Falu BS
・ Falu FK
・ Falu IF
・ Falu Party


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Faltings's theorem : ウィキペディア英語版
Faltings's theorem
In number theory, the Mordell conjecture is the conjecture made by that a curve of genus greater than 1 over the field Q of rational numbers has only finitely many rational points. The conjecture was later generalized by replacing Q by any number field. It was proved by , and is now known as Faltings's theorem.
==Background==

Let ''C'' be a non-singular algebraic curve of genus ''g'' over Q. Then the set of rational points on ''C'' may be determined as follows:
* Case ''g'' = 0: no points or infinitely many; ''C'' is handled as a conic section.
* Case ''g'' = 1: no points, or ''C'' is an elliptic curve and its rational points form a finitely generated abelian group (''Mordell's Theorem'', later generalized to the Mordell–Weil theorem). Moreover Mazur's torsion theorem restricts the structure of the torsion subgroup.
* Case ''g'' > 1: according to the Mordell conjecture, now Faltings's Theorem, ''C'' has only a finite number of rational points.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Faltings's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.